A one-pass sequential Monte Carlo method for Bayesian analysis of massive datasets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A One-Pass Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets

For Bayesian analysis of massive data, Markov chain Monte Carlo (MCMC) techniques often prove infeasible due to computational resource constraints. Standard MCMC methods generally require a complete scan of the dataset for each iteration. Ridgeway and Madigan (2002) and Chopin (2002b) recently presented importance sampling algorithms that combined simulations from a posterior distribution condi...

متن کامل

An adaptive sequential Monte Carlo method for approximate Bayesian computation

Approximate Bayesian computation (ABC) is a popular approach to address inference problems where the likelihood function is intractable, or expensive to calculate. To improve over Markov chain Monte Carlo (MCMC) implementations of ABC, the use of sequential Monte Carlo (SMC) methods has recently been suggested. Effective SMC algorithms that are currently available for ABC have a computational c...

متن کامل

Bayesian Phylogenetic Inference using a Combinatorial Sequential Monte Carlo Method

The application of Bayesian methods to large scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov Chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently develo...

متن کامل

Sequential Monte Carlo for Bayesian Computation

Sequential Monte Carlo (SMC) methods are a class of importance sampling and resampling techniques designed to simulate from a sequence of probability distributions. These approaches have become very popular over the last few years to solve sequential Bayesian inference problems (e.g. Doucet et al. 2001). However, in comparison to Markov chain Monte Carlo (MCMC), the application of SMC remains l...

متن کامل

Bayesian Optimization Using Sequential Monte Carlo

We consider the problem of optimizing a real-valued continuous function f using a Bayesian approach, where the evaluations of f are chosen sequentially by combining prior information about f , which is described by a random process model, and past evaluation results. The main difficulty with this approach is to be able to compute the posterior distributions of quantities of interest which are u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2006

ISSN: 1936-0975

DOI: 10.1214/06-ba112